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ABSTRACT: A necessary step to properly assess and validate the performance of force fields for biomolecules is to exhaustively
sample the accessible conformational space, which is challenging for large RNA structures. Given questions regarding the
reliability of modeling RNA structure and dynamics with current methods, we have begun to use RNA tetranucleotides to
evaluate force fields. These systems, though small, display considerable conformational variability and complete sampling with
standard simulation methods remains challenging. Here we compare and discuss the performance of known variations of replica
exchange molecular dynamics (REMD) methods, specifically temperature REMD (T-REMD), Hamiltonian REMD (H-REMD),
and multidimensional REMD (M-REMD) methods, which have been implemented in Amber’s accelerated GPU code. Using two
independent simulations, we show that M-REMD not only makes very efficient use of emerging large-scale GPU clusters, like
Blue Waters at the University of Illinois, but also is critically important in generating the converged ensemble more efficiently
than either T-REMD or H-REMD. With 57.6 μs aggregate sampling of a conformational ensemble with M-REMD methods, the
populations can be compared to NMR data to evaluate force field reliability and further understand how putative changes to the
force field may alter populations to be in more consistent agreement with experiment.

■ INTRODUCTION

Knowledge of the role RNA plays in biological processes is ever
increasing, and critical to RNA function are its structure,
folding, dynamics, and interactions with other molecules.1

Biomolecular simulation methods, including molecular dynam-
ics (MD), are promising tools that augment experimental
approaches by providing a detailed depiction of RNA structure
and interactions on time scales ranging from pico- to
microseconds. Crucial to the usefulness of MD methods are
the reliability of the force fields. Due to the lag in the
development of nucleic acid force fields compared to protein
force fields, many question the accuracy and validity of the
current RNA force fields.1−3 This lag can be attributed to the
high charge state of nucleic acids, the subtle balance between
interactions within the RNA and with the solvent environment,
the high conformational variability in the RNA backbone, and
the lack of adequately converged sampling data.4−6 Current
“state of the art” conventional MD simulations cannot be

trusted to parametrize force fields because convergence errors
could be as large as or equal to those in the force field, leading
to corrections for misdiagnosed problems that could instead
simply be the result of incomplete sampling. Assessing force
fields by standard MD simulation of RNA motifs like tetraloops
has proven challenging because efficient sampling is limited by
their large size.7−9 Therefore, smaller tetranucleotides are being
used as test systems for force field development and
assessment. Though generating the full conformational
ensemble is more tractable than it is for tetraloops,10

tetranucleotides display significant conformational variabil-
ity.11−13 The complexity of elucidating the full conformational
ensemble of tetranucleotide models is demonstrated by the lack
of convergence of conventional MD simulations, even after
microseconds of simulation time.10,12
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Convergence of population distributions is more readily
achieved by using enhanced sampling or an ensemble method
such as REMD, which has been widely applied to study protein
dynamics, and, to a lesser extent, nucleic acid dynamics.9,14−19

This is beginning to change, as recent studies by Chen and
Garcia18 and Kührova ́ et al.20 have used REMD in combination
with their respective force field modifications to fold hairpins
and tetraloops to their native structure. Traditional REMD
involves multiple independent simulations run at different
temperatures (T-REMD) which periodically attempt an
exchange in temperature space.21,22 Replicas at low temperature
have an opportunity to exchange to a higher temperature where
energy barriers may be more easily crossed; in this manner the
effective sampling space of each replica is enhanced. However,
this method has its drawbacks: T-REMD may not substantially
enhance sampling if the system is too large and the number of
replicas needed to bridge a temperature range is prohibitive, or
if increased temperature does not facilitate the conformational
transition of interest. An alternative is Hamiltonian replica
exchange (H-REMD)23 where part of the Hamiltonian is scaled
or altered, for example, with a weighted biasing potential with
the opposite sign of the dihedral term (targeting protein
backbone dihedrals)24 or with various sets of umbrella
sampling-like restraints for different elements of the ensem-
ble.25 A benefit is that one replica may be simulated with the
original Hamiltonian which, given sufficient sampling and
exchange, provides the complete unbiased ensemble.
Not only is convergence crucial for force field development,

but it is also even more important for accuracy and comparison
with experiment. Generating a formal definition of convergence
greatly depends on which system properties one wishes to
converge in a simulation. Many authors have determined
metrics of convergence for replica exchange simulations, and
most, if not all, replica exchange studies discuss the extent to
which their simulations are converged. Abraham and Gready
proposed that within replica exchange simulations there is
interplay between thermodynamic efficiency of sampling the
ensemble properties, and mixing efficiency of replicas traversing
the temperature or Hamiltonian range of interest.26 Several
studies analyze peptide melting curves, RMSD to known
experimental structures, radius of gyration, and principal
component projections as ensemble properties, ideally between
independent sets of REMD simulations which start from
different conformations.27−30 Quantitative measures of con-
vergence in biomolecular simulation include autocorrelation
functions of potential energy,31 a “decorrelation time” defined
by Lyman and Zuckerman,32 and Kullback−Leibler divergence
analysis.33 Previously, we illustrated the importance of
generating a converged ensemble with the r(GACC)
tetranucleotide; however, in 2 μs of T-REMD per replica
with 24 replicas spanning 277−396 K, the ensemble was not
yet completely converged.10 Even with longer simulation, now
at 3.8 μs of T-REMD per replica or an aggregate sampling of
over 90 μs, a well-converged ensemble is elusive (Supporting
Information Figures S1 and S2). Differences in the populations
of conformations in the ensemble are significant and warrant
further exploration of sampling methods, including H-REMD
and its extension to multidimensional replica exchange (M-
REMD) to see if complete sampling can be obtained more
quickly.

■ COMPUTATIONAL METHODS

Amber Implementation. In T-REMD and H-REMD,
exchanges occur in only one dimension; i.e., only one part of
the Hamiltonian is being altered between replicas. However,
two or more exchange dimensions can be coupled; this
approach is referred to as multidimensional REMD (M-
REMD). This leads to enhanced conformational sampling.
Not only are there more replicas in the simulation
simultaneously sampling conformational space, but also differ-
ent conformational properties of the system can be enhanced.
M-REMD has been implemented in the MD engines SANDER
and PMEMD in a development version of Amber (to be
released with Amber 14) and will be briefly described here. The
current implementation allows for the use of any number of
Hamiltonian dimensions (i.e., changes in the system topology
that do not involve changing the number of atoms, as well as
changes to input parameters) and/or temperature dimensions.
In addition, the code has been designed to be extensible to
facilitate the addition of other dimension types. A schematic of
the M-REMD simulation setup used in this work is shown in
Figure 1.

M-REMD in SANDER/PMEMD makes use of the existing
T-REMD and H-REMD exchange subroutines. Exchanges are
attempted in each dimension in turn, so that the first exchange
is attempted in the first dimension, the second exchange is
attempted in the second dimension, and so on. This is
illustrated in the following pseudocode:

Here “%” denotes the modulo operation, n_exchange is the
number of the exchange being attempted, remd_dimension is
the total number of replica dimensions, and remd_types[ ] is an
array of size n_dimension containing an index corresponding to
the type of exchange to be performed in that dimension.
As with T-REMD or H-REMD, individual replicas are

defined in a file called the “group file”, with each line defining
the input file, input coordinates, topology file, etc. for each
replica. In M-REMD there is an additional file called the

Figure 1. Schematic diagram of the M-REMD simulation. Each plane
represents a different Hamiltonian, and each arrow represents a
different temperature. The unbiased Hamiltonian, shown in yellow,
can be recovered at the Temperature of interest. Exchange in
temperature dimension between 285.7 and 290.2 K is followed by an
exchange in Hamiltonian space between H0 and H1. This figure
represents four out of 24 temperatures and three out of eight
Hamiltonian dimensions used in this work.
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“dimension file”, which defines both the replica dimensions and
which replicas are allowed to exchange within each dimension.
This file follows the same Fortran namelist format that Amber
MD input files use; there is a title followed by a “&multirem”
namelist for each replica dimension with format:

Exchange type (exch_type) is currently restricted at present
to either “TEMPERATURE” or “HAMILTONIAN”. A
“Replica List” consists of a comma-separated list of integers
corresponding to positions in the group file, where replica 1 is
the first entry in the group file; this defines which replicas are
allowed to exchange within that dimension. M-REMD is
enabled in a simulation by specifying “-remd-file <dimension
file>” on the command line.
Ensemble Postprocessing Using CPPTRAJ. As with the

current implementations of T-REMD and H-REMD in Amber,
exchanges in temperature space are accomplished by swapping
temperatures, and exchanges in Hamiltonian space are
accomplished by swapping coordinates. This means that if
any dimension is temperature, trajectories will have to be sorted
if data are to be processed at a single temperature. This requires
that every trajectory file contain information describing the
overall dimensionality of the run (i.e., how many dimensions
there are and of what type) and each trajectory frame contain
information on where it is located in each dimension. Similarly,
the restart files used to checkpoint the simulation must contain
the same information. Because NetCDF files are by their nature
extensible, adding additional information to the format does
not break existing parsers that have not yet been set up to
recognize it; the additional information is not used. Primarily
because of this, it was decided that only the Amber NetCDF
trajectory and restart formats would be updated for M-REMD,
and thus all M-REMD runs require the use of the Amber
NetCDF trajectory and restart formats. Only three additional
pieces of data were required to be added to the NetCDF
trajectory/restart formats: an integer containing the number of
replica dimensions (N), an integer array (of dimension N)
containing the type of each dimension, and an array (of
dimension F × N, where F is the total number of frames)
containing the indices of a replica in each dimension for each
frame. CPPTRAJ from AmberTools 13.0 has been modified to
process the new information from these trajectories.
Analysis Using the DBScan Clustering Algorithm.

Postprocessing of all REMD simulations was performed using
PTRAJ and specially modified development versions of
CPPTRAJ.34 Cluster analysis was performed using two
methods: the average-linkage hierarchical agglomerative and
DBscan clustering methods.35,36 For both algorithms, coor-
dinate RMSD was used as the distance metric. The average-
linkage agglomerative algorithm clustered on heavy atoms of
residues 1−4 used a critical distance ε value of 2.3 Å and a
variable sieve value to ensure a 5000 frame initial pass through
the trajectory. DBscan clustering was performed on a subset of
atoms described using the AMBER mask syntax (:1@
N2,O6,C1 ′ ,P , :2@H2,N6,C1 ′ ,P , :3@O2,H5,C1 ′ ,P , :4@
O2,H5,C1′,P), used a distance cutoff ε of 0.9 Å between

clusters and a minimum of 25 points required to form a cluster.
Again, a variable sieve was employed to ensure at least a 5000
frame first pass through the trajectory.

Principal Component Analysis. Principal component
analysis was performed using CPPTRAJ. To compare principal
components obtained from two independent runs, the
covariance matrix was calculated from the combined trajectories
of the two independent simulations for a given REMD type;
each frame was first RMS-fit to an overall average structure to
remove global translational and rotational motion. The
eigenvectors and eigenvalues were then obtained from
diagonalization of the combined covariance matrix, after
which coordinates from each independent trajectory were
projected along eigenvectors of interest to obtain projection
values for given modes.

Measuring Convergence using Kullback−Leibler
Divergence Analysis. The Kullback−Leibler divergence
analysis33 over time was performed using a development
version of CPPTRAJ. At each frame t, a histogram for each data
set being compared (Pt and Qt) was constructed from data at
all previous frames (0 → t) using a Gaussian kernel density
estimator with 400 bins and a bandwidth estimated from the
normal distribution approximation for the entire data set. The
Kullback−Leibler divergence at frame t (KL(t)) was then
calculated:

∑=
⎛
⎝⎜

⎞
⎠⎟t Pt i

Pt i
Qt i

KL( ) ( ) ln
( )
( )i (1)

To ensure that the Kullback−Leibler divergence was properly
defined, the sum over each histogram was normalized to 1.0
and frames in which a bin had density in one histogram but no
density in the other histogram were ignored.

Simulation Details. The GACC RNA, r(GACC), system
setup, building, and equilibration protocol used here was
previously described in Henriksen et al.10 The Amber ff12SB
force field parameters were used that include the base AMBER
ff99 force field37 and the parmbsc0 corrections for α/γ nucleic
acid backbone torsions and XOL3 torsion corrections for
RNA.4,5 The r(GACC) structures used in temperature
replica-exchange (T-REMD) simulations were directly taken
from the previous work and were solvated with 2497 TIP3P
waters38 and 3 Na+ ions.39 Equilibration was performed at each
of the 24 replicas’ target temperature (temperatures ranged
from 277 to 396 K). Replicas were spaced to yield at least a
∼20% acceptance rate. The previous T-REMD runs were
extended from ∼2 μs per replica to ∼3.8 μs per replica.
All (nonreplica exchange) molecular dynamics (MD)

simulations were carried out with the pmemd.cuda.MPI module
of the Amber12 suite of programs.40,41 All replica exchange
molecular dynamics (MD) simulations were carried out with
the development version of the pmemd.cuda.MPI and
pmemd.MPI modules based on the Amber12 suite of programs;
this code will eventually be released as part of Amber14.
Production dynamics for each replica were carried out in the
NVT ensemble. Temperature was regulated using the Langevin
thermostat with a collision frequency of 2 ps−1 using the “ig=-1”
option to randomly set the random number seeds at each
restart, avoiding synchronization effects.42,43 An integration
time step of 2 fs was used. The exchange attempt time interval
was set to 1 ps. The nonbonded direct space cutoff was set to
8.0 Å, and default Amber12 particle mesh Ewald settings were
used for reciprocal space calculations. SHAKE was used to
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constrain bonds to hydrogen.44 Simulations and analysis were
performed both locally at the University of Utah’s Center for
High Performance Computing and also on the NCSA Blue
Waters and XSEDE Keeneland and Stampede computational
resources.
H-REMD simulations were performed with eight replicas;

this drastically cuts back on the number of replicas in the
simulation compared to T-REMD, which was possible because
decent exchange probabilities between the Hamiltonians could
be obtained. For the H-REMD, we uniformly scaled the
dihedral force constant (DFC) of all dihedrals by a constant,
from 1.0 (full force field) to 0.3 (lowest torsion barriers in this
work) by 0.1 intervals: (1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3)
leading to eight replicas. Support for such parameter/topology
file modifications will be included in the ParmEd and
CPPTRAJ tools distributed with AmberTools 14. When the
torsion barrier heights are decreased, interconversion between
minima and overall sampling of structural populations is
enhanced. On the basis of our system benchmarks, scaling from
full DFC to 30% DFC by 10% intervals gave acceptable
potential energy overlap between replicas and led to an
exchange acceptance of 57% to 26% (Supporting Information
Figure S3). Simulations were performed using the development
version of Amber14 and AmberTools14 suite of programs in
which H-REMD and M-REMD are implemented.45−47 For the
initial H-REMD simulations, the equilibrated structure at 300 K
was used as a starting structure for all eight replicas. To
generate starting structures for the subsequent and independent
H-REMD simulation, the restart structures from the original H-
REMD simulation after 510 ns were assigned new velocities
and simulated for 1 ns in the NVT ensemble.
With fewer replicas, convergence of the H-REMD distribu-

tion requires long simulations per replica, or long wall-clock
time, to aggregate a similar amount of sampling. To accumulate
sampling on the same order as the M-REMD and T-REMD,
the DFC was scaled from a factor of 1.0× (full DFC) to 0.3×
over 192 replicas using an interval of 0.0036. Starting structures
for the 192 replica H-REMD were identical to the 8 replica H-
REMD run 2 structures and were each used 24 times. An
exchange acceptance rate from 96% to 99% was observed.
To further enhance sampling, the temperature and

Hamiltonian dimensions were combined into a two-dimen-
sional M-REMD run. By combining the temperature and
Hamiltonian dimensions,48 we can reach the converged
ensemble for a solvated r(GACC) tetranucleotide much faster
than using either T-REMD or H-REMD alone. For the M-
REMD simulations, the temperature range used was the same
as in the previously published T-REMD simulation, totaling 24
T-REMD replicas from 277 to 396 K, which, when coupled
with the 8 H-REMD replicas, leads to a total of 192 replicas.
Each equilibrated starting structure from T-REMD was copied
eight times, and each copy was assigned a different
Hamiltonian. To generate the starting structures for an
independent M-REMD simulation, the initial r(GACC)
structures equilibrated at their target temperatures were
assigned new velocities and simulated for 1 ns.

■ RESULTS
Figure 2 shows histograms of the mass-weighted heavy atom
RMSD of each individual H-REMD and M-REMD simulation
to an A-form reference structure. Overlapping histograms
indicate that separate simulations are sampling the same RMSD
space, which is a necessary but not sufficient condition for

convergence. The large error bars between the two
independent H-REMD runs in Figure 2 indicates the
simulations have sampled somewhat different populations.
Error bars between the two M-REMD simulations are smaller,
and indicate that the simulations, which start from different
structure sets, ultimately sample more similar RMSD space
than the H-REMD simulations, as well as the T-REMD
simulation (shown in Supporting Information Figure S2). To
characterize the populations, cluster analysis on the 300 K
trajectories was performed using CPPTRAJ (sample scripts are
available in the Supporting Information).34 Representative
structures and cluster populations are shown in Figure 3 and
Supporting Information Table 1 and Figure S4. The two H-
REMD simulations disagree about the populations of the major
peak at 5.0 Å (the intercalated-anti and inverted-syn structures
in Figure 3), as well as the structures at 4.0 (1_3-basepair) and
6.0 Å (intercalated-syn). In contrast, the smaller error bars
between independent runs of M-REMD indicate much better
convergence of the populations between the two simulations
(shown more clearly in Supporting Information Table 1 and
Figures S5, S6, and S7). This also indicates that the higher
temperature replicas are critical to resolve structures in the
unconverged regions of the H-REMD simulation.
Poorer apparent convergence between the H-REMD runs is

supported by the lower correlation between cluster populations
of the two independent runs compared to M-REMD, shown in
Figure 4. Independent simulations are clustered together, and
the cluster population from each independent run is reported.
If the simulations are sampling the same conformational space
despite the difference in their starting structure conditions, they
are better converged, and the cluster populations from the two
independent runs will be the same. The cluster populations
from the H-REMD simulations have a correlation coefficient of
0.93, whereas the populations from the M-REMD simulations
have a correlation coefficient of 0.99. To test the robustness of
the correlation, the 95% confidence intervals were calculated for
the slope (α) and intercept (β) of the linear fits for the H-
REMD and M-REMD simulations, shown as the shaded area in

Figure 2. Population analysis showing the number of structures at
specific RMSD values from an A-form reference structure. Mass
weighted RMSD histograms of the unbiased replicas at 300 K are
averaged (shown in black) between two runs (shown in red and blue).
Error bars represent standard deviation between two runs.
Independent sets of starting structures were used for each simulation.
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Figure 4. The correlation was also calculated with the most
populated cluster left out (Supporting Information Figure S8).
The difference between the two sets is more apparent in the H-
REMD simulations, again indicating that the independent
simulations remain unconverged.
Principal components, which describe the overall dynamics

of the system, are less easily converged than other metrics,
particularly those components corresponding to the lowest
frequency motions. To ascertain whether the dynamics of two
independent runs appear to be converged, we looked at the
overlap of histograms of principal component projections

calculated from Cartesian coordinates obtained from each
simulation (see Computational Methods: Principal Component
Analysis for more details). If the replicas have sufficiently
diffused through temperature and Hamiltonian dimensions, the
different initial structure sets should sample the same
conformational space resulting in a close principal component
overlap. A script that can be used to perform this calculation
with CPPTRAJ can be found in the Supporting Information.
Figure 5 shows the overlap in the first five principal
components for the H-REMD and M-REMD simulations.
The independent H-REMD simulations diverge, particularly in
the first low frequency mode (black solid line vs black dashed
line), which is representative of the majority of fluctuations in
the system. Conversely, the M-REMD principal component
histograms show excellent overlap, indicating similarity
between the overall dynamics of each independent M-REMD
run.
To quantitatively examine rates of convergence, we

performed Kullback−Leibler divergence analysis (KL diver-
gence) over time on histograms of principal component (PC)
projections for the unbiased 300 K trajectories from H-REMD
and M-REMD, as well as for the histograms of mass weighted
RMSD to an A-form reference structure.33 The results are a
measure of the difference between probability distributions
sampled from each simulation as a function of simulation
length, yielding a time-dependent measure of ensemble
differences. Low divergence values indicate the ensemble at
time X is not significantly different from the final ensemble,
whereas high divergence values indicate the ensemble at time X
is very different from the final, or most converged ensemble.
Figure 6 shows the KL divergence of the first three principal
components for the H-REMD and M-REMD simulations. M-

Figure 3. Representative structures from DBscan cluster analysis at 300 K. The top six most populated clusters in most REMD simulations are
shown above. For the r(GACC) sequence the coloring is G1 (red), A2 (green), C3 (cyan), and C4 (magenta). Cluster populations for M-REMD are
shown in black, H-REMD in red, and T-REMD in blue. M-REMD and H-REMD cluster populations represent the average of two independent
simulations. Cluster names were assigned on the basis of analysis of the 277 K T-REMD trajectory.

Figure 4. Correlation of cluster populations between independent H-
REMD runs and independent M-REMD runs. Linear fit and
correlation coefficients for H-REMD and M-REMD are shown,
where red fits all clusters. The shaded area represents a 95%
confidence interval where the slope and y-intercept bounds are
denoted by α and β, respectively.
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REMD converges to the final ensemble quickly, reaching a
divergence of almost zero after 250 ns. In contrast, the H-
REMD remains unconverged (particularly in the first PC) even
after more than 1 μs per replica. This pattern is echoed in the
KL divergence analysis of the mass weighted RMSD to an A-
form reference for the M-REMD and H-REMD simulations,
where the H-REMD simulations are clearly not converged
whereas the M-REMD simulations appear well-converged.
In addition to poorer convergence, even with equivalent

aggregate MD simulation times (i.e., using 192 H-REMD
replicas to match the sampling of the M-REMD simulation), H-
REMD tends to underpopulate the peak at 4.0 Å (the 1_3-
basepair structure) and show significant differences between
resulting ensembles (Supporting Information Figure S9). For
example, the H-REMD simulations yield several low-populated
clusters that differ from more populated clusters solely due to
glycosidic X flips and shifts to more optimal π-stacking

geometries. The T-REMD samples few of these extended
structures, whereas the M-REMD cluster structures contain a
mix of both T-REMD-like structures and lower population H-
REMD-like structures (Supporting Information Table S1 and
Figure S4).

■ DISCUSSION
Sampling of alternate X-flipped/π-stacked structures in the H-
REMD simulations is likely a direct result of our choice to bias
the dihedral force constant. In knocking down the dihedral
barriers, the nonbonded terms of the force field have a greater
effect on the structure. At high biasing levels, less energy is
required to overcome unfavorable torsional barriers to form
favorable nonbonded contacts. Conformations which contain
flipped X dihedrals, for example, are seen more often in the H-
REMD simulations compared to T-REMD simulations. When
the temperature is added into the sampling with M-REMD, the
higher temperature replicas are less likely to become trapped
because they can more easily break these favorable nonbonded
interactions.
The choice of bias and the resulting overemphasis of

nonbonded interactions may result in the nonconvergence of
the H-REMD simulations. If specific structures (e.g., the X-
flipped structures) are favored at high biases, rearranging to a
canonical X value is prohibitive in the unbiased replica where
the dihedral barriers are at their full heights. Supporting
Information Figure S9 illustrates this point; through clustering,
a X-flipped structure becomes representative of one of the four
major clusters in H-REMD. This phenomenon could possibly
be remedied by increasing the number of replicas at low biasing
levels or by providing more time at low to no bias for X
dihedrals to repopulate canonical values.
A summary of the populations sampled by each REMD

method is shown in Figure 7. Here the danger in drawing
conclusions about conformational preferences from uncon-
verged data becomes evident. The relative differences in
population at the 3.0 and 5.0 Å peak reflect differences in the
NMR minor and intercalated-anti conformations, two of the
highest populated clusters. If only H-REMD was used to study

Figure 5. Principal component projection of top five modes onto
(left) H-REMD run 1 (solid lines) and H-REMD run 2 (dashed lines)
show little overlap in the low frequency modes, whereas (right) M-
REMD run 1 and M-REMD run 2 show the overlap in the low
frequency modes.

Figure 6. Kullback−Leibler divergence analysis. Time dependent
Kullback−Leibler divergence. Left: first three principal components
from the H-REMD and M-REMD simulations. H-REMD principal
components 1, 2, and 3 are maroon, red, and orange. M-REMD
principal components 1, 2, and 3 are blue, purple, and cyan. Right:
mass-weighted heavy atom RMSD to an A-form reference from the M-
REMD (blue) and H-REMD (red) simulations.

Figure 7. RMSD population histograms at 300 K from the various
REMD simulations. Shown are the normalized populations (y-axis) of
structures at particular mass-weighted RMSD values (x-axis) of all
atoms in residues 1−4 to a reference structure (A-form RNA) for the
various REMD simulations.
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r(GACC), the 1_3-basepair conformation, represented by the
peak at 4.0 Å, would most likely not be seen because this
structure seems to be the most difficult to converge on the basis
of the M-REMD and T-REMD simulations. The efficiency of
the M-REMD also becomes obvious; with the same amount of
aggregate sampling, the 1_3-basepair conformation is not
sampled in H-REMD (black), whereas the two independent M-
REMD simulations appear more converged in this region than
any other simulations performed here.
An additional concern raised in review and in presentation of

these results is the influence of salt on the conformational
ensemble and the potential for biasing the population due to
the inclusion of only net-neutralizing Na+ ions. To address this,
additional M-REMD simulations equivalent to the previously
discussed simulations were performed in 100 mM NaCl and
also 100 mM KCl using the Joung/Cheatham ion parameters.39

As shown in Figure S10 and described in the Supporting
Information, the change in salt concentration and ion identity
appears to have a minimal effect on the RMSD population
histograms suggesting a nearly equivalent conformational
ensemble comparing net-neutralizing Na+ to 100 mM NaCl
or 100 mM KCl.
As previously mentioned, rigorous analysis of simulation

convergence is necessary to properly validate force fields, so
after having apparently converged our simulations, we are now
in a unique position to truly interrogate our current parameters.
Though we generate a very well-converged ensemble for
r(GACC), it is apparent that our current force field does not
adequately reproduce the experimental NMR data seen for this
tetranucleotide.13 An A-form major conformation was observed
via NMR, as well as a minor conformation characterized by a
flipped C4 base. In our converged M-REMD simulations, the
populations of the NMR major and minor conformations were
18% and 24%, respectively. The intercalated-anti structure
accounted for 12% of the population. This structure has been
seen in previous simulations,10,13 yet there is no experimental
evidence showing that it should be this highly populated. The
structure is characterized by intercalated stacking and increased
number of hydrogen bonds. On the basis of these observations,
we are in the process of both comparing to other existing RNA
force fields and attempting to refine various force field terms,
such as altering charges, dihedral terms, and stacking
interactions to help guide revisions to the Amber force fields.6

■ CONCLUSIONS
In summary, we have demonstrated that apparent convergence
for very flexible systems can be more quickly achieved by
combining temperature and dihedral force constant biasing in
M-REMD. By itself, the H-REMD simulation did not converge
in an adequate time frame; overcoming the high-bias replica’s
preference for π stacked and X flipped structures at low or
unbiased replicas was prohibitively slow. By addition of the
temperature dimension, a well-converged ensemble, deter-
mined by various metrics presented here, was achieved within
300 ns of sampling (per the 192 replicas). As M-REMD tends
to utilize more replicas, the time to solution in wall-clock hours
improves if sufficient access to large-scale, high performance
computational resources is available. In the case of AMBER
simulations, speed-up is especially impressive with access to
large-scale GPU resources such as NCSA Blue Waters and the
XSEDE Stampede and Keeneland resources where these
simulations were performed. This method will be used to
investigate the ensembles of other (or all) tetranucleotide

sequences, providing a comprehensive look at the underlying
structure preference of current force fields.
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(7) Krepl, M.; Reb́lova,́ K.; Kocǎ, J.; Sponer, J. J. Phys. Chem. B 2013,
117, 5540−5555.
(8) Sorin, E. J.; Engelhardt, M. A.; Herschlag, D.; Pande, V. S. J. Mol.
Biol. 2002, 317, 493−506.
(9) Garcia, A. E.; Paschek, D. J. Am. Chem. Soc. 2008, 130, 815−817.
(10) Henriksen, N. M.; Roe, D. R.; Cheatham, T. E., III. J. Phys.
Chem. B 2013, 117, 4014−4027.
(11) Tubbs, J. D.; Condon, D. E.; Kennedy, S. D.; Hauser, M.;
Bevilacqua, P. C.; Turner, D. H. Biochemistry 2013, 52, 996−1010.
(12) Yildirim, I.; Kennedy, S. D.; Stern, H. A.; Hart, J. M.; Kierzek,
R.; Turner, D. H. J. Chem. Theory Comput. 2012, 8, 172−181.
(13) Yildirim, I.; Stern, H. A.; Tubbs, J. D.; Kennedy, S. D.; Turner,
D. H. J. Phys. Chem. B 2011, 115, 9261−9270.
(14) Meng, Y.; Dashti, D. S.; Roitberg, A. E. J. Chem. Theory Comput.
2011, 7, 2721−2727.
(15) Sorin, E. J.; Rhee, Y. M.; Nakatani, B. J.; Pande, V. S. Biophys. J.
2003, 85, 790−803.
(16) Wolf, M. G.; Jongejan, J. A.; Laman, J. D.; de Leeuw, S. W. J.
Phys. Chem. B 2008, 112, 13493−13498.
(17) Kim, S.; Roitberg, A. E. J. Phys. Chem. B 2008, 112, 1525−1532.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400862k | J. Chem. Theory Comput. 2014, 10, 492−499498

http://pubs.acs.org
mailto:tec3@utah.edu


(18) Chen, A. A.; García, A. E. Proc. Natl. Acad. Sci. U. S. A. 2013,
110, 16820−16825.
(19) Paladino, A.; Zangi, R. Biophys. Chem. 180−181, 110−118.
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